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The problems of optimization of control processes in recent years 
attract considerable attention of researchers. The classical apparatus 
of the calculus of variations [l-5 1 as well as newer methods are em- 
ployed for their solution. Certain results, important for the theory of 
optimum systems, have been obtained with the use of the naxi8am princi- 
ple of Pontriagin [ 13-9 I, the methods of functional analysis [ 10 1, and 
the method of dynamic programming [ 11 1. 

Numerous questions of optimization of Control processes can be formu- 
lated in the form of the Lagrange problem [l. 12-15 I, the Mayer problem 

[6,8 1, and the Mayer-Bolza problem of the calculus. of variations. Here, 
the most general of them, the Mayer-Bolza problem, is discussed, with 
the modifications introduced by the questions of optimization [2-4, 13, 
14 1 and with the limitations imposed on the controls being taken into 
account. For this case the necessary conditions of minimum are estab- 
1 ished. 

The author expresses his gratitude to A.I. Lur’e for his attention 
and help in carrying out this work. 

1. Formulation of the problem. Consider the functions x,(t) 
(s = 1, . . . . n) and uk(t) (k = 1, . .., m). satisfying, for t0 < t < T, 
the system of n ordinary differential equations of the first order 

g, = & - f, (21, . . . , Zn, 241, . . . , um, t) = 0 (s = I, . . . n) (1.1) 

and the r finite relations 

$‘li = qbc(Ul, * * *, %n, t) = 0 (k=l, . . ..r<m) (I.21 

and satisfying also the p conditions at the ends (t, and Tmay be ,not 
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It is required to find those functions x8, uk for which the functional 

assumes the minimum (or exit) value. 

lhis formulation leads to the Mayer-Bolza problem 113 1 of a particu- 
lar type complicated by the existence of Equations (1.2) and the func- 
tions uh(t) whose derivatives do not appear in the equations of the 
problem. It includes a wide class of optimization problems of control 
processes 114 1 _ In the discussion of such problems, the functions u,(t) 
are called the control parameters or controls, and x,(t) are called the 
coordinates. ‘Ihis terminology will be used in the following. 

We shall assume that all the requirements of the calculus of vari- 
ations imposed on the functions used in this formulation are satisfied. 
We shall investigate only the normal curves 113 1 of the n + I dimen- 
sional space of the coordinates and controls which correspond to a 
minimum of the functional J. The case of maximum may be reduced to the 
case being discussed by changing the sign of J, or by changing the signs 
of the inequalities given in the following. 

Unlike in the cases considered previously 114,15 1, where only the 
necessary conditions of extremum were discussed, we shall investigate 
here the trajectories with the general conditions (1.3) for the ends, 
the functional J including two terms, and we shall state all necessary 
conditions of minimum of the functional J. In [14 I the method of using 
the equations of the type (1.2) is described with the limitations in the 

form 

Uk(l’ < uk (t) < u&(21 (1.5) 

which determine the interval of admissible changes of the controls. In 
the present case, the relations (1.2) are assumed in the form 

where the function Xk(uk ) is defined as 
1 
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Xk (&,.) = ( Xk, 
dXk 

&- f O. &,(‘) < uk, < u,1(2) 
ka 

(1.7) 
‘Xk o 

-= ( 
"k, 

+, > uk,(2’ 

with uk, being an additional control parameter. These equations may be 

also established in the form [4 I 

(U*(l) - uk)(uk - ukC2)) - uk,2 = $k = 0 (3.8) 

We note that a similar assumption can be used if more general limita- 

tions are considered 

S-P < 0 (u,, . , . , z&n’, t) < SP (l-9) 

where $k has the form 

q = 0 (r.+, . . . ) Um*, t> - x (urn,+,) = 0 (1 .lO) 

and x(u,+ 1) can be obtained from (1.7) by substituting 0"' and !Jf2) 

for Uktl)'and Uht2). 

In this way one additional control is introduced for each of the 

limitations of the type (1.5) or (1.6). All of them should be included 

in the total number of m controls existing in the equations of the prob- 

lem. 'Ihe additional controls, however, enter only in Equations (1.2) but 

do not appear in Equations (1.1). 'Ihe functions f, contain all the con- 

trols if the relations (1.2) reflect a kinematical or other property of 

the system being optimized, and the optimum problem without limitations 

is discussed. 

With the use of the relations of the type (1.6) or (1.101, the tran- 

sition is accomplished from the closed domain of the coordinates and 

the controls actually existingein Equations (1.1) to the open domain of 

the coordinates and all the controls, including also the additional con- 

trols introduced by Equations (1.2). 

'Ihe limitations (1.5) and (1.9) will be an essential feature of the 

problems of optimization of control proclesses. They complicate consider- 

ably the solution of the problem since they necessitate the considera- 

tion of the discontinuous functions uC(t). Thus, the functions corre- 

sponding to the minimum value of the functional J will be sought among 
the continuous functions z*(t) with piece-wise continuous derivatives 
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x,(t), and among piece-wise continuous controls uiftI. In i 15 3, certain 
conditions of integral type were formulated, which here will not be 
considered. 

2. The condition of extremum of the functional J. In 
establishing the condition of minimum of the functional J, the equi- 
valent exp&sion is used 

wbere 

==o k=l 

Here, pl, A,(t), and rk(t) are the undetermined multipliers of 
Lagrange which are to be calculated. Furthermore, the first variation AI 
of the.functional I is constructed and assumed to be equal to 
results in the sought condition of extremum of the functional 

Such a procedure, although for a simpler problem, has been 
in [ 14 I. Therefore, only the final results will be given: 

Ihe equations 

zero. This 
3. 

described 

i,* 
all =-- 

az,k 
(S=f,.,., n). -$+I f&=1, . ..) m> (2.5) 

k 

the boundary conditions 

Ihe Erdmann-Weieretrass 
of A,(t) and H) 

h, (P) = &+ (P) 

The derivatives d 8 ldt, 

conditions (i.e. the conditions of continuity 

(8 = i,- * . . ) n), (N-)** = @qt. WV 

and d0/dt in Equations (2.6) and (2.7) are 
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equal to 

As was done in [14 I, we assume that, in the interval to < t < T, 
there is one point t = t+ of discontinuity of the controls u,(t), and 
we denote by the signs - and + the values of the corresponding functions 
in the sub-intervals t,, < t < t+ and t* < t < T. 

‘Ike relations (2.5) to (2.8) represent the conditions of extremum of 
the functional J. In order to solve the problem of optimization, they 
should be coapleomnted by bations (1.1) and (1.2), which can be 
written in the form 

. f_ i3H 
X8 -- 

cqf 
(s=f 

aH 
n) )..., I G=O (k=i,...,r) (2.9) 

by the end conditions (1.3), and by the conditions of continuity of the 
coordinates 

x*-(P) = Z,+(P) @&,...,A) (2.10) 

Now& to determine the 4n + 2m + 2r functions x,*(t), A,‘(t), uk*(t), 
and pi (t), we have the 2n + 2n Equations (2.5) and the 2n + 2r Equa- 
tions (2.9). Integration of the differential equations introduces 4n 
constants, which can be determined together with the multipliers 

p&.2 = 1, .-., p) and the quantities t,, t*, and T from the 4n + p + 3 
conditions (2.6) to (2.8), (2.10). 

The second group of Equations (2.5) should be noted; they coincide 
with the necessary conditions of extremm of the function H with respect 
to the controls uL. If the functions f, and $k do not depend explicitly 
on time, the following first integral exists 

H=&+H,=h=const 

In this case the relations are valid 

(2.11) 

(2.12) 

which replace the second group of Equations (2.6) and (2.7). 

3. 'Ihe necessary condition of Weierstrass. Ihe necessary and 

sufficient condition of Weierstrass for the absolute miniauu of the 
functional J can be established with the use of the Weierstrass function 
E, which in this case has the form 
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a!3 = L(x,, . . . , x,, Xl, . . . , xi,, Ul, . . . , u,, hl, . . . , h,, p1, f * * , pt, q - 

- L (Xl, . . . , x,, 3& . . . ) in, z&l, . 0 . , Urn, hl, . . * ) h,, p1, * * * , pr, tf - 

-i (2, -k,)g 
e=1 8 (3.1) 

Here, xs and u& correspond to the curve for which the functional .i is 
minimum; Xs and Uk are arbitrary admissible functions satisfying Aqua- 
tions (l.l), (1.21, and the conditions (1.3). 

In the textbooks [12,13 3 a different form of the function E is given, 
without the controls uk and uk, which is caapatible with the problems 
discussed in those books. The necessity of introducing the controls uk 
and uk into the variational problems of optimization of control processes 
may be shown by repeating the arguments and calculations leading to the 
necessary condition of Weierstrass [13 ] and taking into account that 
the functions f, and $k depend on the controls uk but do not depend on 
their derivatives (this is given in the Appendix, Section 6). 

Substituting expression (2.3) into Equation (3.11, we obtain 

+H(x:,, . . . , an,, ~1, . . . , urn, A,, . . . , Ls, ~1, . . . , CLr* 0 (3.2) 

'Ihe necessary condition of a strong unit of the functional J 

E>O (3.3) 

is equivalent to the inequality 

H(x,, . . . . xn, U,, . . . . Urn, b, . . . . b,, ~1, . 
<H(s,, **-, zn, ~1, -e-t gmr &, *..t J-s, ~12 

a, Fr, t) < 
'.') &? 1) (3.4;) 

Exceeding the scope of this paper, we can note that the sufficient 
condition of Weierstrass for the absolute minimum follows from (3.4) if 
the sign of equality is omitted. Thus, in an optimum system correspond- 
ing to a minimum value of the functional J, the function H is maximum 
with respect to the controls uk, for their arbitrary admissible values. 

Since the additional controls, discussed in Section 1, do not enter 
into the function Hj, and since H 

P 
r 0, the Weierstrass condition' and the 

extremum condition for the problems discussed can be formulated in a 
form analogous to the maximum principle of Pontriagin 16,8 I. 

%%e parameters of control uk, for which the functional J reaches its 
minimum value, correspond also to the maximum of the function HA for 
arbitrary admissible n (t), A (t), p (t) satisfying bations (2.91, 
(2.5), conditions (1.3f, (2.6f, (2.7!, and the continuity conditions 
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(2.81, (2.10). 

It should be stressed that with the use of this principle, important 

results of the theory of optimum systems have been obtained in the 

papers by Pontriagin, Gamkrelidze, Roltianskii, Rozonoer, and others. 

4. l&e necessary condition of Clebscb. In order to derive the 

necessary condition of Clebsch for a weak minimum of the functional J, 
we can use the results of the preceding section. We assume that U, and 

is9 satisfying Equations (1.1) and (1.2), differ from uk and k, by small 

quantities, such that 

u/i = uk + auk, 8, = i* + sL, (4.1) 

where &a, and 6fs are small admissible variations satisfying the vari- 

ational equations along the curve corresponding to a minimum value of the 

functional J 

it&,-~ ‘$hk=O (s=i, . . . . n) (4.2) 
A=1 

i ~aupo (k=l,...,r) 
P=1 

(4.3) 

We substitute expressions (4.1) into Equation (3.1) and we expand the 

first term of its right-hand side in a series in au, and 8is. We have 

then 

where the terms of the order higher than two are neglected. Substituting 

L from (2.3) into this last relation, and using the condition (3.3), we 
obtain 

(4.5) 

This inequality, together with equations (4.2) and (4.3), represents 

the necessary condition of Clebsch for a weak minimum of the functional 

J. It is easy to see that this condition and the extremum condition co- 

incide with the necessary condition for a maximum of HA with respect to 
the controls uL, with Equations (1.2) being satisfied and for small 

admissible variations of the controls. All the derivatives in Equations 

(4.2) to (4.5) are to be calculated at the points of the curve corre- 

sponding to a minimum of the functional J. 
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5. ‘Ihe necessary condition of Jacobi. The last necessary coh- 
dition of minimum of the functional J is the condition of Jacobi. Accord- 
ing to this condition we require that the second variation A21 of the 

V.A. Troitrhii 

functional I, calculated at the curve corresponding to a minimum of the 
functional J, does not assume negative values 113 I. This variation is 
of the following form 

AZ1 = 29 [As, (lo), . . . , AX, (t,,), W,, Ax, (T), - . . t Axn (T), *Tl + 

+ 5 20(bz1, . . . , 8x11, au1, . . . ) du,)dt 
1, 

and it can be determined as described in the book by Bliss 113 1 . 

In the Expression (5.1), 24 and 26.1 denote the quadratic forms 

(5.1) 

(5.3) 
‘lhe intervals used at certain terms in the relation (5.1) and the 

form (5.2) are introduced to simplify the notations, and they denote, 
for example in the case of the second term in equation (5.1) 

Finally, Ax *(to) and Ax*(T) denote the variations of the ends of 
the comparison curves 

Axa (4,) = 6~s (t,) + is (4,) at,, Ax, (T) = ax, (T) + is(T) 6~ (5.4) 

All the coefficients of the variations in Equations (5.1) to (5.3) 
are to be calculated at the points of the curve corresponding to a 
minimum of the functional J. 

Using the relation (2.3), we can express the coefficients of the 
quadratic from (5.3) in terms of the second derivatives of the function 
H, which results in 
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Let us consider now the condition of no-ne~tiveness of the second 
variation (5.1). It can be obtained by solving the associated problem of 
minimum of the second variation [13 I, i.e. by determining such vari- 
ations 6x,, . . . . 6x,, au,, . . . . Sum, at,,, and ST, related by the vari- 
ational equations at the curve corresponding to a minimum of the func- 
tional J 

and the conditions 

that the second variation A21 reaches its minimum value. In this case, 
A21 can be represented in the following form 

A21 = j[&~,(t,), * - *, ha(&J, ~~,, 62, V), * * 0, ha(q bT1 + 

+ [ 20(6sl,...,Bx,,Sul,...,8u,)dt (5.9) 

which follows from th~s~stit~ti~ of the variations (5.4) into (5.1). 

'Ihe form of the functional (5.9) and the restrictions (5.6) to (5.8) 
indicate that the associated problem of minimum of the second variation 
reduces to the variational problem of Mayer and Bolza, of the type de- 
scribed in Section 1. In the solution of this problem, the results de- 
scribed above may be used. 

It should be noted that in many cases we may limit ourselves to the 
investigation of the extremum conditions and the conditions of Weier- 
strass or Clebsch. The associated problem of minimum of the second vari- 
ation A2.1 of the functional I has actually the trivial solution 

6x, = . . . = 6xn =4u, = . . . = &A, = 8t, = 8T = 0 (5.10) 

If this solution proves to be unique and satisfying the condition of 
extremum of the second variation, then the condition of Jacobi is thus 
fulfilled. 

6. Appendix. The necessary condition of l eiemtr888. In izstsblishinf 
the necessary condition of Reierstrass for an absolute minimum of the 

functional J, we shall follow the book by Bliss [ 13 1. The variational 
problem will be considered as formulated in Section 1. We assume that 
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the functions i, and tik have derivatives of the order used in the follow- 
ing discussion. 

In the n + m dimensional space xl, . . . , ~a, al, . . . , aa we shall con- 
sider a normal [ 13 1 curve C, satisfying Equations (1.1). (1.2)) and con- 
ditions (1.3), which corresponds to the minimum of the functional J. we 
shall assume that the matrix 

a+ Wi 
-= 
au !I II 

au. 
I 

whose i, jth element is the derivative a&/duj. has on the curve C the 
rank equal to r, i.e. equal to the number of equations (1.2). 

Then, repeating the calculations presented in the book by Bliss, we 
find that the curve C may be included in the p-parameter family of carves 

Is (b, t) (s = 1, . . .) n), ulc (h t) (k = 1,. . .) m) (6.1) 

satisfying Equations (1.1) and (1.2). with the values b1 = . . . = bp = 0 

corresponding to the curve C. Here and in the following, to simplify 
notations, b denotes the whole set of parameters bl, . . . , bp. Similar 
notation x and a will be used for the set of coordinates ~1, . . . , X, and 
controls al, . . . . ua. 

In the interval to < t < T. we select now a point t’, not coinciding 
with a corner point of the curve C. and we construct three families of 
curves 

z*(b, t), uk (b, t) (to-8<t<t’, Ibl<e) 

X,(b, 0, u, it) (t’<ttt’+e, Ibl<e, lel<e) 

x8 (b, e, 0, uk (b, t) (t’+e<t<T+8, Ib!<e, lel<e) 

(szl,..., n, k=l,..., m) 

(6.2) 

satisfying the equations 

in 

. 
Zs--f, (2. u, t) = 0 (s = 1, . . .( n), $]h(k t, =O (k=1 es..., r) (6.3) 

the first and the third Intervals. 

The curves of the second family satisfy the equations 

ju,-f,(X, u, Q=O (s = 1,. . .( n), qk(U,t)=O (k=i,...,r) (6.4) 

In constructing these families of curves, the conditions have been 
used 

x, (b, to) = xs (to) + 5 b&s, @o) 
a=1 

x, (b, t’) = x8 (b, t’h x8 (b, e, t’ + e) = X, (b, t’ i- e) (s=i,.. .,n) (6.5) 
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Uk( t) denote arbitrary admissible functions. For b = c = 0, the first 
family and the third family yield the functions determining the curve C. 
We use the notation 

3% 
L = ab, ’ 

Ju, 
ckct = ab, WI 

for the variations of the first and the third families with respect to 
the parameters b,, and the notation 

8% auk 

&=ae* g,k=~EO (6.7) 

for similar variations with respect to the parameter 
(6.5) we have 

e. From (6.2) and 

f,,(t)=0 (to-8<t<t’), d, (1’) -j- j, (t’) - 2, (1’) VW 

We introduce the variations rOa and rTa of the abscissas of the left- 
hand and the right-hand end with respect to the parameters b, 

(6.9) 

where tQ and T correspond to the curve C. Substituting the functions zd 

and “&. and the quantities t,, and T from Equations (6.2) and (6.9) into 
the boundary conditions (1.3), we obtain the equations 

qL = ‘p[ (b, e) = ‘pl 1s (b, to(b)], to(h), r [b. e. T WI, i” WI = 0 (I=l,....p) (6.10) 

We note that the determinant 1 d+ I/ db, 1 is different from zero on 
the curve C, as this curve is considered to be normal. But then Equations 
(6.10) have the solutions 

6, = B, (e) (6.il) 

vhich become equal to zero for c = 0. 

Eliminating with the use of (6.11) the parameters b, from the ex- 
pressions (6.2). we obtain a one-parameter family of curves satisfying 
Equations (1.1) and (1.2) and the end conditions (1.3). This family con- 
tains the carve C at e = 0. For this value of e = 0, the equation holds 

a$1 (aF)o B,’ (0) + (z), = 0 (6.12) 

Acre, the subscript 0 indicates that the values of the derivatives 
are calculated for c = 0. 

Since the curve C corresponds to a minimum of the functional J, its 
derivative with respect to c (C > 0). for .Z = 0, cannot be negative. 
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Consequently, the necessary condition of minimum of the functional J 

will be the inequality 

(6.13) 

Calculating the values of the derivatives in this inequality, we snb- 
stitute the functions (6.2) into the functional J, and re obtain 

J (6. e) = J Iz (b, LO(~)), to lb). 2 (6 e, T (b)), T (b)] (6.14) 

To the right-hand side of this relation we now add a component identi- 

cally equal to zero 
T 

s 
’ (L-/o)dt 

t, 

Thus, re have the sum 

J = g (b. e) + 
s 

L ix (b. 1)s z (b, t). u (b, t), ?L (t), p (f), t] dt + 
J,(b) 
f’+e 

+ c L IX (b, th i (b, t), CJ (t), 1 (t), p(t), t] dt + 
? 

T(b) 

+ ‘i- L[z(b. e, t). 1 (b, e, t), u (b, t), I (t), p(t), t) dt 
I’$+ 

(6.15) 

Differentiating it aith respect to b, 

(6.16) 

Calculating the value of this derivative for c = 0, we note that for 
e = 0 the second integral on the right-hand side becomes equal to zero. 
Assuming that the conditions of extremum are satisfied, we see that only 
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the first four terms of the sum (8.16) are different from zero. They can 
be transformed to the forla 

8nd we have finally 

fn a sisilar ray 

n 

- (fc) ] Em (to) + [& +.($!,I La m} + g 6 I) 

+&, dgr 
dye To+& oar=- 

ah 
p1 db, 

(6.17) 
I=1 

(6.18) 

the derivative is determined 

The last term of the right-hand side of this eXpreSSiOn becomes eqU81 
to zero Bccording to the condition of extremuu. Considering that the 
variations of the abscissas of both ends of the family are equal to zero, 
a to/de = 8 T/de = 0, re obtain the following result 

($i, + $ Qr (z),= (E)p 
I=1 

(6.20) 

where E denotes the Weierstrass iunction of our problem 

E=L(s, k, u, h, p, t)--I; (2, ;. u, L, p, 1)-i (k/-k) aL (6.21) 
#==I “a;, 

Substituting the derivatives (~~/~b~)~ and (aJ/dc)b into the in- 
eqnality (6.13), and using the relation (6.121, we obtain the fin81 re- 
sult 

aJ 
t > 5-o = (E),,), 0 (6.22) 

This inequality should be satisfied for an arbltrarr point t’ not co- 
inciding with corner points of the curve C. Nevertheless, continuity 
implies that it should be also satisfied at corner points. 
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